PACS Nirvana: University Radiology's Reporting-driven Workflow

Twitter icon
Facebook icon
LinkedIn icon
e-mail icon
Google icon

Ever since digital imaging liberated radiologists from the site of image acquisition, radiology practices have labored to patch together distributed reading solutions that would efficiently meet the needs of multiple clients, balance workflow, and enable subspecialization. Not all solutions have been elegant, and many are downright ugly, requiring multiple monitors, keyboards, virtual private networks, and dictation systems for each remote reader.

On the other end of the spectrum is the digital cockpit set up by University Radiology (URad) for its radiologists, described by Alberto Goldszal, PhD, MBA, CIO, University Radiologists, East Brunswick, New Jersey, during a session on June 5 at the Society of Imaging Informatics in Medicine meeting in Charlotte, North Carolina, and in a subsequent interview.

It uses one monitor, one keyboard, and one dictation system for each reader covering six unaffiliated hospitals and eight imaging centers. Add to that the ability to pull prior studies from all sites, regardless of where the new exam is performed.

“If hospital A, B, or C has an unread case, we really don’t care if it is hospital A, B, or C; all we care about is that there is an unread case out there that needs to be dictated. Philosophically, it’s really keeping an eye on the prize. The product of radiology is the report. Our focus is on that report—on the capture of the order as well as the creation of the results.” —Alberto Goldszal, PhD, MBA


What enabled University Radiology to achieve PACS nirvana? Goldszal’s solution is based on standards (namely HL7 and DICOM); a PACS and dictation system with built-in intelligence, allowing probabilistic matching of studies from unaffiliated institutions; and, surprisingly, a little help from HIPAA.

URad is an 83-radiologist practice reading for 14 sites heavily concentrated in the central corridor of New Jersey, along Interstate 95. Most of the six hospitals that the practice covers are academic centers for which URad provides everything from the department chair to the attending physicians for the residents, in addition to reading 600,000 hospital-based procedures per year. Add to that another 300,000 procedures done at the group’s eight imaging centers.


URad’s clients are independent, unaffiliated locations that are geographically distributed, primarily in New Jersey, but also throughout the tristate area of New York, New Jersey, and Pennsylvania. Since it created an in-house night-coverage service with 10 radiologists reading from Illinois, Washington, California, Germany, and Israel, URad’s members are also geographically distributed (see Figure 1).

URad needed a solution that could consolidate the reading of all studies on one platform that wouldn’t require redundant hardware. “When you are reading for two hospitals, you really have two options. There’s no in-between,” Goldszal explains. “One, historically, is you teach the radiologists how to work with the information systems of each hospital, and if that radiologist is working remotely, it may mean that you have to put hardware and software from each hospital into the radiologist’s home. [If] the radiologist is covering three hospitals, you may end up with three PACS, three dictation systems, perhaps six computers, six keyboards, three microphones, and so forth. That is the historical model.”

He continues, “Of course, as we increase the number of sites, it becomes increasingly difficult to manage, and learn well, all of these applications, not to mention the difficulty in installing and supporting all of these remote applications at the radiologist’s home or reading center. Why not put in one set of applications and bring the data to it, so the radiologist only needs to learn a single set of applications? That is what we refer to as a single cockpit.”

Goldszal says that bringing the data to the reader was not difficult, given the evolution of DICOM and HL7 standards. “We built the whole, thing and there is nothing proprietary in what we do,” he says. “Everything that’s here was bought off the shelf, from vendors in the market, and put together using standards.”

Mining Overlap: Access to Prior Studies

What added a layer of complexity to the project was the URad requirement of access to all relevant prior studies from the sites that it covers. URad radiologists knew that the patient histories that would come from aggregating the data from all covered sites would improve diagnostic confidence, accuracy, and quality.